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eparative Effects of Allogeneic Mesenchymal
recursor Cells Delivered Transendocardially in
xperimental Nonischemic Cardiomyopathy
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ennis H. Lau, MD,* Troy Jantzen, PHD,§ Jim Manavis, BSC,‡ Kerry Williams, DIP APPSC,*
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delaide and Sydney, Australia; and New York, New York

bjectives This study set out to evaluate the safety and efficacy of allogeneic bone marrow mesen-
hymal precursor cells (MPC) delivered by multisegmental, transendocardial implantation in the set-
ing of nonischemic cardiomyopathy (NICM).

ackground Prospectively isolated MPC have shown capacity to mediate cardiovascular repair in
yocardial ischemia. However, their efficacy in NICM remains undetermined.

ethods Mesenchymal precursor cells were prepared from ovine bone marrow by immunoselection
sing the tissue nonspecific alkaline phosphatase, or STRO-3, monoclonal antibody. Fifteen sheep with
nthracycline-induced NICM were assigned to catheter-based, transendocardial injections of allogeneic
PC (n � 7) or placebo (n � 8), under electromechanical mapping guidance. Follow-up was for 8 weeks,
ith end points assessed by cardiac magnetic resonance, echocardiography, and histology.

esults Intramyocardial injections were distributed similarly throughout the left ventricle in both
roups. Cell transplantation was associated with 1 death late in follow-up, compared with 3 early
eaths among placebo animals. Left ventricular end-diastolic size increased in both cohorts, but
PC therapy attenuated end-systolic dilation and stabilized ejection fraction, with a nonsignificant

ncrease (37.3 � 2.8% before, 39.2 � 1.4% after) compared with progressive deterioration after pla-
ebo (38.8 � 4.4% before, 32.5 � 4.9% after, p � 0.05). Histological outcomes of cell therapy in-
luded less fibrosis burden than in the placebo group and an increased density of karyokinetic car-
iomyocytes and myocardial arterioles (p � 0.05 for each). These changes occurred in the presence
f modest cellular engraftment after transplantation.

onclusions Multisegmental, transendocardial delivery of cell therapy can be achieved effectively in
ICM using electromechanical navigation. The pleiotropic properties of immunoselected MPC confer
enefit to nonischemic cardiac disease, extending their therapeutic potential beyond the setting of myocar-
ial ischemia. (J Am Coll Cardiol Intv 2010;3:974–83) © 2010 by the American College of Cardiology
oundation
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onischemic cardiomyopathy (NICM) contributes to
pproximately one-third of clinical cardiac failure and
omprises numerous etiologies, some of which are espe-
ially refractory to current management options (1).
espite the interest in cell-based therapies for ischemic

eart disease (2), there has been a paucity of studies
nvestigating their utility in nonischemic disease. Recent
eports have described the intracoronary administration
f autologous, unselected bone marrow (BM) cells to
atients with NICM (3,4). However, the safety and
fficacy of other cell types and methods of delivery remain
nderstudied, beyond the setting of small animal research
5–7).

Bone marrow mesenchymal stromal/stem cells (MSC)
re multipotent cells that are notable for their ease of
solation, proclivity for expansion, and unique immuno-
egulatory properties, which may enable their allogeneic
se for tissue repair (8). In pre-clinical and clinical
tudies of myocardial infarction and chronic ischemia,
hese cells have demonstrated the capacity to improve
ardiac perfusion and augment contractile function (9 –
2). These studies have predominantly used BM MSC
repared by simple plastic adherence-isolation (13). This
onselective technique has several limitations that may
estrict the stemlike characteristics of conventional MSC
reparations (14). Prospective isolation is an alternative
trategy that aims to selectively enrich for immature
esenchymal precursor cells (MPC) at high purity, based

n their expression of cell surface antigens that can be
argeted by specific monoclonal antibodies (mAb) (e.g.,
tromal precursor antigen-1 [STRO-1], tissue nonspecific
lkaline phosphatase [STRO-3]) (15,16). Previously, we
ave shown that selective preparation of MPC enhances
heir cardiovascular trophic effects in vitro (14), and that
hese cells impart provasculogenic and antifibrotic effects to
he myocardium after experimental myocardial infarction
17,18).

In the current study, we hypothesized that the pleiotropic
haracteristics of MPC may also confer reparative benefit to
onischemic heart disease. We used an ovine model of
nthracycline-induced NICM (19) to investigate the safety
nd efficacy of allogeneic BM STRO-3–selected MPC,
elivered by multisegmental, transendocardial injections
nder electromechanical guidance.

ethods

or an expanded description, see the Online Appendix.
vine model of NICM. Animal experiments conformed to

he “Guide for the Care and Use of Laboratory Animals”
ublished by the U.S. National Institutes of Health (NIH
ublication No. 85-23, revised 1985) and were approved by
he institutional Animal Ethics Committee. i
The study protocol is summarized in Online Figure 1.
ifteen Merino wether sheep (weight 45 to 55 kg) under-
ent baseline cardiac evaluation before receiving serial

ntracoronary doses of the anthracycline agent, doxorubicin,
o induce NICM, as previously described (19). In brief,
oxorubicin (1 mg/kg) was infused into the left-sided
oronary arteries under fluoroscopic guidance, with a 5-F
mplatz diagnostic catheter (ALI, Cordis Corporation,
iami Lakes, Florida). Doses were repeated every 2 weeks

ntil animals showed echocardiographic evidence of left
entricular (LV) systolic dysfunction (fractional shortening
25%). Ten weeks after the first doxorubicin exposure,

ardiac assessment was repeated with cardiac magnetic
esonance, transthoracic echocardiography, and left and
ight heart catheterization. Animals were then randomized
o transendocardial injections of allogeneic MPC (n � 7) or
lacebo (n � 8).
ell preparation. Mesenchymal
recursor cells were prepared
y STRO-3–based, magnetic-
ctivated, Dynal bead selection
rom BM mononuclear cells
MNC) of male Rambouillet
train sheep (16,18). These cells
ere characterized in vitro for

lonogenicity, surface immuno-
henotype, and multilineage dif-
erentiation potential.

Passage 4 MPC were used for
ransplantation and were trans-
uced with retroviral particles
ncoding green fluorescence
rotein (GFP) to investigate for
ellular engraftment. Cryo-
reservation was performed in a
ixture containing ProFreeze
AO Freezing Medium (Lonza
io Whittaker, Walkersville, Maryland), which was also
sed as placebo. Immediately prior to injection, frozen
reparations were thawed at 37°C and cell viability and
umber were assessed by trypan blue exclusion.
ntramyocardial injections. Percutaneous LV electrome-
hanical mapping (NOGA XP Cardiac Navigation System,
iologics Delivery Systems Group, Cordis Corporation,
iamond Bar, California) was performed just before cell/

lacebo injections, using standard methodology (20).
hree-dimensional map reconstructions of unipolar voltage

mplitude and linear local shortening ratio were used to
elineate regional abnormalities of myocardial electrical
iability and/or mechanical function.

Transendocardial injections were performed with 8-F
yoStar catheters (Biologics Delivery Systems) (Online

ig. 2). Each animal received 20 injections (0.2 ml/

Abbreviations
and Acronyms

BM � bone marrow

GFP � green fluorescence
protein

LV � left ventricular

mAb � monoclonal
antibodies

MNC � mononuclear cells

MPC � mesenchymal
precursor cells

MSC � mesenchymal
stromal/stem cells

NICM � nonischemic
cardiomyopathy

STRO-3 � tissue nonspecific
alkaline phosphatase
monoclonal antibody
njection), distributed throughout t
he left ventricle, target-
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ng areas of reduced linear local shortening ratio (�11.5%)
nd/or unipolar voltage amplitude (�7.5 mV) (Figs. 1A and
B). These threshold values had been determined in a
revious validation study (21). The apex and posterior wall
ere injected less frequently to avoid cardiac perforation and
ue to difficulty in establishing catheter tip stability near the
apillary muscles. Injections were administered at a rate of
.1 ml/15 s and standard criteria were used to ensure
atisfactory intramyocardial delivery (20).

Animals were followed for 8 weeks after transendocardial
ntervention, at which time they were restudied with cardiac

agnetic resonance, transthoracic echocardiography, and
emodynamic measurements before euthanasia (sodium
entobarbital 120 mg/kg).
istopathology. In addition to study animals, 4 weight-
atched, healthy sheep were used to provide reference to

normal” histology. Hearts were excised, weighed, perfusion-
xed (4% paraformaldehyde), and immersed in 10% buffered
ormalin. The LV was cut transversely at 1-cm intervals. Slices

Figure 1. Intramyocardial Injections

(A, B) Representative anteroposterior (A) and “bull’s-eye” (B) projections of a l
sites (brown circles) (linear local shortening: purple: �11.5%, red: �9.3%). (C
between the 2 treatment groups. Results shown are mean � SEM. (D) Intramy
cohorts, without significant intergroup difference. Whisker bars show median

and maximum range (bars). A � anterior; L � lateral; LV � left ventricular; MPC �
rom the basal, mid, and distal levels were each divided into 4
egments (anterior, septal, posterior, and lateral), which along
ith the apex provided 13 segments for analysis. After paraffin

mbedding, contiguous 5-�m sections were taken from each
egment for staining with hematoxylin and eosin, Masson’s
richrome, and immunohistochemistry.

Masson’s trichrome slides were analyzed with semiauto-
ated analySIS Pro software (Olympus Soft Imaging So-

utions GmbH, Muenster, Germany) to determine the
ercentage area of myocardium occupied by fibrosis (blue
olor) for each segment and for the LV overall.

The effects of MPC transplantation on cardiomyocyte
aryokinesis and myocardial vascularity were evaluated by
anual counting of Ki67�/desmin� cells and alpha-smooth
uscle actin-positive vascular structures, respectively.
welve fields of view (4 subendocardial, 4 midmural,
subepicardial) were examined at �20 magnification for

ach myocardial segment. Results were expressed as the aver-
ge count per field of view for each of the animal groups.

local shortening map display the multisegmental distribution of injection
e was no significant difference in the segmental location of injection sites
ial delivery was followed by minor elevations of serum troponin-T in both
(horizontal line), with 25th to 75th interquartile range (box) and minimum
inear
) Ther
ocard
value
mesenchymal precursor cells; P � posterior; P-A � periapical; S � septal.
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tatistical analysis. All analyses were performed blind to
tudy group. Normality of data distribution was assessed by
hapiro-Wilk test where indicated and continuous variables
eported as mean � SEM. Intragroup comparisons at
ifferent time points were performed by paired Student t
est or repeated measures analysis of variance. Intergroup
omparisons involved unpaired Student t test, 2-way or
-way analysis of variance, with Tukey post-hoc test, as
ppropriate. Statistical significance was established at
-tailed p � 0.05.

esults

mmunopreparation of MPC. Enrichment for STRO-3 in-
reased recovery of colony forming units-fibroblast from
ambouillet BM MNC, by approximately 3-fold compared
ith unfractionated MNC (p � 0.05) (Online Fig. 3A).
esenchymal precursor cells, prepared by in vitro expansion

f STRO-3� MNC, demonstrated multilineage develop-
ental potential by producing mineral, fat, and cartilage
atrix under inductive culture conditions (Online Fig. 3B)

nd fulfilled the immunophenotypic criteria of MSC
CD29�/CD44�/CD166�/CD45–/CD14–/CD31–) (On-
ine Fig. 3C).
re-injection characteristics of doxorubicin-treated sheep.
he 15 sheep (46.5 � 0.7 kg) that were randomized to
lacebo or MPC had received a cumulative doxorubicin
ose of 3.7 � 0.1 mg/kg (range 3 to 4 mg/kg). At the time
f NOGA XP-guided intervention, mean ejection fraction

Table 1. Pre-Injection Characteristics of Study Anima

Plac

Baseline

Doxorubicin dose, mg/kg

Body weight, kg 46.1 � 0.8

Hemodynamics

Heart rate, beats/min 94.3 � 2.6

Mean arterial pressure, mm Hg 76.9 � 1.6

LV end-diastolic pressure, mm Hg 10.0 � 0.5

PCWP, mm Hg 5.9 � 0.7

Cardiac index, l/min/m2 3.0 � 0.1

Cardiac magnetic resonance

LV EDV, ml 78.3 � 6.8

LV ESV, ml 44.5 � 4.9

LV EF, % 44.9 � 1.8

Echocardiography

LV EDD, mm 42.3 � 0.9

LV ESD, mm 28.2 � 1.1

LV FS, % 33.6 � 1.4

Results are shown as mean � SEM. There were no significant intergrou

*p � 0.05, †p � 0.01, ‡p � 0.001 for intragroup comparisons betwee

EDD � end-diastolic dimension; EDV � end-diastolic volume; EF �
FS � fractional shortening; LV � left ventricular; MPC � mesenchymal precur
ad decreased from 45.5 � 1.5% to 37.1 � 1.8% (p � 0.01).
oth groups were similar for hemodynamic parameters, LV
hamber size, and systolic function (Table 1).
ntramyocardial cell transplantation. Total injection time
as 61 � 3 min/case. Average MPC dose was 109 � 5 �
06 cells per animal or 5.5 � 0.2 � 106 cells per injection,
ith stable cell viability (88.4 � 1.8%) maintained through-
ut the duration of injection procedures. The distribution of
njection sites was similar in both groups (Fig. 1C). Two
lacebo surgeries were complicated by supraventricular
achycardia that resolved quickly with temporary removal of
he injection catheter. All cases were associated with small
ncreases in 24-h troponin-T titers (Fig. 1D). Significant
hanges in systemic inflammatory markers (e.g., white cell
ount, C-reactive protein) were not observed after
reatment.
urvival. One animal receiving MPC was euthanized at 4
eeks to allow for histological detection of GFP-labeling

nd cell engraftment. In the remaining animals, there were
pre-mature deaths in the placebo group (3 of 8) and 1 in

he MPC group (1 of 6) (p � 0.58 by Fisher exact test). The
lacebo deaths occurred between weeks 2 and 3 of follow-up
rom progressive cardiac failure (n � 1) and sudden cardiac
rrest (n � 2). The animal that died after cell therapy
eveloped polymorphic ventricular tachycardia during anes-
hetic induction for follow-up cardiac magnetic resonance.
ardiac remodeling and function. In animals that were
ollowed for 8 weeks after placebo intervention, there was a

� 8) MPC (n � 7)

Pre-Injection Baseline Pre-Injection

3.7 � 0.2 3.6 � 0.2

48.6 � 1.2 47.0 � 1.2 49.5 � 0.7

94.1 � 3.6 92.3 � 4.7 98.2 � 5.7

70.9 � 3.7 79.6 � 2.5 72.0 � 2.6*

13.4 � 1.3* 11.3 � 0.7 14.9 � 1.2†

8.6 � 0.6† 5.8 � 0.6 8.7 � 0.5‡

3.0 � 0.2 3.0 � 0.2 2.9 � 0.2

82.3 � 3.6 77.0 � 3.8 80.0 � 3.8

51.0 � 3.8 42.9 � 4.5 50.0 � 2.4

36.9 � 2.9* 46.2 � 3.0 37.4 � 2.1*

43.6 � 1.1 40.4 � 1.1 42.7 � 1.2

33.0 � 1.4* 28.0 � 1.1 33.2 � 1.3*

24.0 � 1.4‡ 31.0 � 1.1 22.5 � 1.1‡

ences between placebo and MPC animals at baseline or pre-injection.

ine and pre-injection.

fraction; ESD � end-systolic dimension; ESV � end-systolic volume;
ls

ebo (n

p differ

n basel

ejection
sor cells; PCWP � pulmonary capillary wedge pressure.
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elative increase in LV end-diastolic volume of 26.0 �
.3%, compared with 18.3 � 7.6% after MPC intervention
n � 5 for each group, p � 0.19 for intergroup comparison)
Fig. 2A). Placebo sheep also developed end-systolic dila-
ion (p � 0.01) and further reduction of systolic function,
ith LV ejection fraction decreasing from 38.8 � 4.4% to
2.5 � 4.9% (p � 0.05). In contrast, cell therapy attenuated
he expansion of end-systolic size (Figs. 2C and 2D) and
as accompanied by a nonsignificant increase in ejection

raction (37.3 � 2.8% to 39.2 � 1.4%) (Fig. 2E) and

Figure 2. Effect of MPC on LV Size and Function

Graphs show the progress of left ventricular end-diastolic volume, end-diastolic
dimension, end-systolic volume, end-systolic dimension, ejection fraction, and
fractional shortening for both groups. Data are shown as mean � SEM. n � 5
surviving animals per group. *p � 0.05, †p � 0.01 for intragroup comparisons
by paired t test. Intergroup comparisons performed by 2-way analysis of
variance. EDD � end-diastolic dimension; EDV � end-diastolic volume;
EF � ejection fraction; ESD � end-systolic dimension; ESV � end-systolic
volume; FS � fractional shortening; PreInj � pre-injection; other abbrevia-

tions as in Figure 1.
mprovement in fractional shortening (p � 0.01) (Fig. 2F)
Online Fig. 4). Mean arterial pressure and pulmonary
apillary wedge pressure also deteriorated after placebo (p �
.05) but remained stable or improved in the MPC cohort
ver 8-week follow-up (Figs. 3B and 3C).
Intracoronary doxorubicin resulted in slowing of LV

ctivation time, from 21.5 � 2.4 ms at baseline to 63.7 �
.3 ms immediately prior to cell/placebo intervention (n �
5 animals, p � 0.001). Electrical activation was further
elayed in the 5 animals that survived after placebo inter-
ention (p � 0.05), but remained unchanged in the MPC

Figure 3. Effect of MPC on Hemodynamic and Electrical Parameters

Graphs display the progress of heart rate (A), mean arterial pressure (B),
pulmonary capillary wedge pressure (C), cardiac index (D), total electrical
activation time (E), and corrected QT interval (F) for both groups. Data are
shown as mean � SEM. n � 5 surviving animals per group. *p � 0.05,
†p � 0.01 for intragroup comparisons by paired t test. Intergroup compari-
sons performed by 2-way analysis of variance. PCWP � pulmonary capillary
wedge pressure; QTc � corrected QT interval; other abbreviations as in Fig-

ures 1 and 2.
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roup (Fig. 3E). Corrected QT interval was also increased
fter doxorubicin exposure (474 � 22 ms at baseline vs.
43 � 14 ms prior to cell/placebo, n � 15 animals, p �
.05), but showed subsequent improvement in 4 of the 5
nimals followed after MPC therapy, an effect not seen in
ny of the placebo group (Fig. 3F).
yocardial fibrosis. Total heart weight–to–body weight

atio did not differ significantly between the groups (placebo
.1 � 0.2 g/kg, MPC 5.5 � 0.3 g/kg; p � 0.12). At
ecropsy, there were multifocal areas of scar and pallor,

Figure 4. Effect of MPC on Myocardial Fibrosis

Necropsy slices of left ventricle display regions of midmural (white arrowhead
precursor cells (MPC) (B) groups. Masson’s trichrome sections show foci of rep
fibrosis (black arrowhead) after cell therapy (D). Both treatment groups had i
less in the MPC cohort (1-way analysis of variance p � 0.001) (E). There were
of variance p � 0.01), reaching statistical significance in the septum (F). Sheep
ments with negligible fibrosis and fewer segments with either reactive or repla
vident on the epicardial and cut surfaces of the LV, that c
ere more prominent in placebo-treated hearts (Figs. 4A
nd 4B). No cases of intracardiac tumor formation, ectopic
one, or cartilage were observed in hearts that had received
PC.
Doxorubicin exposure was associated with increased LV

brosis burden compared with healthy control hearts (p �
.05), comprising both reactive (perivascular or interstitial)
nd replacement fibrosis, with the latter typically located in
ubepicardial or midmural myocardium (Figs. 4C and 4D).
mportantly, fibrosis was lower after cell transplantation

subepicardial (white arrow) pallor from the placebo (A) and mesenchymal
ent fibrosis (black arrow) in a placebo-treated heart (C) and perivascular
ed fibrosis burden compared with healthy control hearts, although this was
toward reduced fibrosis in all myocardial walls of MPC sheep (2-way analysis
had received cell transplantation had a higher proportion of myocardial seg-
nt fibrosis (G). *p � 0.05. Abbreviations as in Figures 1 and 2.
) and
lacem
ncreas
trends
that
ompared with placebo (p � 0.05) (Figs. 4E and 4G), with
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ll myocardial regions showing trends of reduced collagen
ontent in the MPC group, especially the interventricular
eptum (Fig. 4F).
ell engraftment. Sparse GFP� cells were detected in all
V segments, with even distribution between subendocar-
ial, midmural, and subepicardial layers of the myocardium.
hese engrafted cells were incorporated among cardiomy-
cytes (Figs. 5A and 5B) and in perivascular areas, sur-
ounding capillaries, sinusoidal vessels, small and large
rterioles, and arteries (Figs. 5C and 5D).
ardiomyocyte karyokinesis and arteriolar density. Ki67�

ardiac cells were present at low frequency in healthy control
nimals. Although their average density was elevated in
oxorubicin-treated, placebo sheep, they were approxi-
ately twice as prevalent following MPC transplantation

p � 0.05 vs. placebo) (Fig. 6A) and this differential was
bserved in all LV walls (Fig. 6B).
Cell therapy was also associated with a 1.5-fold density of

lpha-smooth muscle actin-positive blood vessels in the
yocardium compared with healthy controls and placebo-

reated sheep (p � 0.05) (Fig. 6C). In keeping with the

Figure 5. Cell Engraftment

Cells labeled with green fluorescence protein were identified by immunohistoc
among endogenous cardiomyocytes (A, B) and around capillaries (C) and larg
ultisegmental approach to intramyocardial delivery, this m
rovascular effect was also found to be widespread through-
ut the LV (Fig. 6D).

iscussion

espite advances in the management of heart failure, poor
rognosis may still accompany NICM (1), justifying evalu-
tion of experimental therapeutic strategies, such as cell
ransplantation. This pre-clinical study describes for the first
ime, the strategy of delivering cell therapy by guided,
ultisegmental, transendocardial injections in NICM. In

his context, we have shown pleiotropic reparative benefits
rom allogeneic, STRO-3–selected BM MPC, consisting of
ttenuation of cardiac dysfunction, reduction of myocardial
brosis, and augmentation of cardiac cell cycling and myo-
ardial vascularity.
mmunopreparation of MPC. The vast majority of studies
hat have previously evaluated BM MSC in cardiovascular
isease have focused on ischemic disease models and have used
onventionally isolated MSC (8,13). In contrast to plastic
dherence isolation, prospective immunoselection uses specific

try (brown-stained cells denoted by arrows) and were located sparsely
od vessels (D).
hemis
Ab to enrich for immature MPC at higher purity. Although
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he utility of the stromal precursor antigen-1, STRO-1, mAb
as been well described for preparation of human MPC
14,15), its applicability has not extended to large animal
pecies routinely used for cardiovascular research, due to its lack
f reactivity with porcine or ovine MPC. In light of this, the
TRO-3 mAb (16) was used in the present study to isolate
lonogenic colony forming units-fibroblast with multilineage
ifferentiation capacity and immunophenotypic character-
stics of MSC. Rambouillet-derived MPC were admin-
stered to Merino sheep in order to simulate allogeneic
ransplantation. This may have special relevance clinically
or patients in whom autologous BM cell therapy is
ompromised by either advanced age or chronic disease
tates, including cardiomyopathy (22).
ranslational studies of MSC/MPC in NICM. Previous evalu-

Figure 6. Effect of MPC on Cardiomyocyte Karyokinesis and Vascularity

The presence of cardiomyocytes in active cell cycle (Ki67�) was augmented af
0.0001) (A), an effect that was observed throughout all myocardial walls (2-wa
vessels were also more prevalent after MPC treatment (1-way analysis of varian
density in the majority of left ventricular regions (2-way analysis of variance p
staining (arrows) are shown from the placebo (E) and MPC groups (F). *p � 0
view at �20 magnification; Ki67� CMC � cardiomyocytes in active cell cycle; o
tion of MSC therapy in NICM has been restricted to small a
nimal studies. In a rodent study of dilated cardiomyopathy,
reated by immunization with porcine cardiac myosin,
ransplantation of isogenic MSC resulted in improved LV
unction, enhanced capillary density, and reduced myocar-
ial fibrosis (5). Mechanistic roles were implicated for both
irect (regenerative transdifferentiation) and indirect (para-
rine support) activity of engrafted cells. Similar benefits
ave been attributed to MSC in other small animal studies
f toxic (7), metabolic (23), and infectious (6) cardiomyop-
thy. However, corresponding results in large animal or
linical studies have thus far been lacking. Therefore, in the
resent study, we evaluated MPC therapy in an ovine model
f anthracycline-induced cardiomyopathy that consists of
eproducible, moderate-severe LV dysfunction, with exten-
ive cardiomyocyte, small-vessel and Purkinje fiber injury

C transplantation compared with placebo (1-way analysis of variance p �

ysis of variance p � 0.0001) (B). Alpha-smooth muscle actin-positive blood
� 0.0001) (C). Despite segmental heterogeneity, MPC enhanced vascular
001) (D). Representative examples of alpha–smooth muscle actin-positive
p � 0.01. �SMA� � alpha–smooth muscle actin-positive; FOV � field of
abbreviations as in Figures 1 and 2.
ter MP
y anal
ce p
� 0.0
.05, †
nd increased myocardial fibrosis (19,21).
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ransendocardial cell delivery. Although myocardial cell
etention is suboptimal with all delivery routes thus far
xamined, studies suggest that superior results are obtained
hen cells are delivered by direct intramyocardial injection,

ompared with intracoronary or peripheral venous infusion
24,25). This is highly relevant in NICM, where the
ecruitment of exogenous cells across the myocardial vascu-
ar bed may be limited by a paucity of inflammatory, homing
ignals (26). Furthermore, the safety of intracoronary ad-
inistration of MSC/MPC remains contentious as the

hysical properties of these cells may result in occlusion of
he coronary microvasculature (24). For these reasons, we
dministered cells by direct, intramyocardial injection,
dopting a catheter-based, transendocardial approach, due
o it being less invasive and more clinically relevant than
pen, transepicardial injection. We used 3-dimensional
lectromechanical navigation to target unhealthy myocar-
ium (21) and achieve multisegmental distribution of injec-
ions to enhance the prospects of achieving global LV
epair.

Cell dose was selected on the basis of recent experience
ith MPC therapy in acute myocardial infarction, in which
etter outcomes were associated with 75 � 106 cells than
igher doses (225 � 106 or 450 � 106 cells) (18). Placebo
r cells were administered 10 weeks after first exposure to
oxorubicin; by which stage, sheep had developed moderate
V dysfunction and evidence of electrical remodeling.

ntraprocedural complications from intramyocardial injec-
ion were limited to 2 instances of supraventricular arrhyth-
ia in the placebo cohort. However, all interventions were

ssociated with elevations in serum troponin-T, indicating
hat early myocardial injury may have been caused by the
njection process itself or by the cryopreservant agent that
as common to both groups. Although the long-term

onsequences of injection site injury/inflammation are dif-
cult to ascertain, the burden of fibrosis in placebo-injected
nimals was consistent with the level that we have previously
oted in other doxorubicin NICM sheep (21).
ffects of MPC in experimental NICM. We observed higher
ttrition in the placebo group with surviving animals show-
ng signs of deterioration that consisted of LV chamber
xpansion, progressive decline of systolic function, elevation
f pulmonary capillary wedge pressure, reduction of arterial
lood pressure, and prolongation of total electrical activa-
ion time. By comparison, MPC therapy was associated
ith attenuation of LV end-systolic dilation and contractile
ysfunction and trends consistent with greater hemody-
amic and electrical stability.
The relatively sparse presence of GFP-labeled MPC in

he myocardium 4 weeks after injection suggests that these
eneficial effects were unlikely to be due to direct substitu-
ion of lost cardiac cell mass. It is more conceivable that
ransient retention of MPC following their administration

rovided a paracrine stimulus for endogenous repair pro- s
esses, thereby reducing fibrosis, stimulating neovasculariza-
ion and cardiomyocyte karyokinesis. These histological
utcomes were manifest globally in the LV, in line with the
ultisegmental approach used to deliver MPC.
Myocardial fibrosis has been shown to be an important

ontributor to the severity of systolic dysfunction and the
evelopment of adverse outcomes in NICM (27). Here, we
howed that the burden of fibrosis was lower after MPC
njection compared with placebo, although it was still
reater than that measured in healthy heart specimens. This
s consistent with the finding that cell therapy prevented
rogression of LV dysfunction, without reversing cardiac
emodeling or restoring function to healthy baseline. The
ntifibrotic properties of MSC/MPC may be due to para-
rine actions mediated by antifibrotic cytokines, such as
epatocyte growth factor (5,18,28). During in vitro exper-

ments, we have found that STRO-3–selected MPC pro-
uce an array of cardiovascular-relevant factors, including
epatocyte growth factor, stromal cell-derived factor
-alpha, and vascular endothelial growth factor that also
ediate antiapoptotic, proangiogenic, and promitogenic

esponses (F. See, August 2010).
Even in the presence of angiographically normal coronary

rteries, NICM has been associated with disturbances to
yocardial blood flow (29). The increase in myocardial

ascularity that we observed with MPC therapy may have
ssisted in limiting the progression of cardiomyopathy. In
art, this may have been mediated by protecting the viability
f cardiomyocytes, including those undergoing karyokinesis
Ki67�). Although the precise nature of these Ki67� cells
as not examined further, their increased presence follow-

ng MPC transplantation could represent paracrine stimu-
ation of mature cardiomyocytes or cardiac progenitor cells
nto active cycle.

onclusions

his study investigated the unique combination of selec-
ively prepared, allogeneic MPC administered by guided,
ultisegmental, transendocardial injections in a large ani-
al model of NICM. The efficacy of this cell/delivery

trategy manifested as attenuation of global systolic dysfunc-
ion, accompanied by pleiotropic effects on myocardial
istology. Pending clinical studies, these results suggest that
he reparative properties of MPC may extend their utility to
he nonischemic context of cardiac disease.
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